3.242 \(\int \frac{\left (1+x^2\right )^3}{\left (1+x^2+x^4\right )^{3/2}} \, dx\)

Optimal. Leaf size=144 \[ \frac{2 \sqrt{x^4+x^2+1} x}{3 \left (x^2+1\right )}-\frac{\left (1-x^2\right ) x}{3 \sqrt{x^4+x^2+1}}+\frac{\left (x^2+1\right ) \sqrt{\frac{x^4+x^2+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac{1}{4}\right )}{\sqrt{x^4+x^2+1}}-\frac{2 \left (x^2+1\right ) \sqrt{\frac{x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \tan ^{-1}(x)|\frac{1}{4}\right )}{3 \sqrt{x^4+x^2+1}} \]

[Out]

-(x*(1 - x^2))/(3*Sqrt[1 + x^2 + x^4]) + (2*x*Sqrt[1 + x^2 + x^4])/(3*(1 + x^2))
 - (2*(1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x], 1/4])/(
3*Sqrt[1 + x^2 + x^4]) + ((1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticF[
2*ArcTan[x], 1/4])/Sqrt[1 + x^2 + x^4]

_______________________________________________________________________________________

Rubi [A]  time = 0.114214, antiderivative size = 144, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2 \[ \frac{2 \sqrt{x^4+x^2+1} x}{3 \left (x^2+1\right )}-\frac{\left (1-x^2\right ) x}{3 \sqrt{x^4+x^2+1}}+\frac{\left (x^2+1\right ) \sqrt{\frac{x^4+x^2+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac{1}{4}\right )}{\sqrt{x^4+x^2+1}}-\frac{2 \left (x^2+1\right ) \sqrt{\frac{x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \tan ^{-1}(x)|\frac{1}{4}\right )}{3 \sqrt{x^4+x^2+1}} \]

Antiderivative was successfully verified.

[In]  Int[(1 + x^2)^3/(1 + x^2 + x^4)^(3/2),x]

[Out]

-(x*(1 - x^2))/(3*Sqrt[1 + x^2 + x^4]) + (2*x*Sqrt[1 + x^2 + x^4])/(3*(1 + x^2))
 - (2*(1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x], 1/4])/(
3*Sqrt[1 + x^2 + x^4]) + ((1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticF[
2*ArcTan[x], 1/4])/Sqrt[1 + x^2 + x^4]

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 22.2267, size = 133, normalized size = 0.92 \[ - \frac{x \left (- x^{2} + 1\right )}{3 \sqrt{x^{4} + x^{2} + 1}} + \frac{2 x \sqrt{x^{4} + x^{2} + 1}}{3 \left (x^{2} + 1\right )} - \frac{2 \sqrt{\frac{x^{4} + x^{2} + 1}{\left (x^{2} + 1\right )^{2}}} \left (x^{2} + 1\right ) E\left (2 \operatorname{atan}{\left (x \right )}\middle | \frac{1}{4}\right )}{3 \sqrt{x^{4} + x^{2} + 1}} + \frac{\sqrt{\frac{x^{4} + x^{2} + 1}{\left (x^{2} + 1\right )^{2}}} \left (x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (x \right )}\middle | \frac{1}{4}\right )}{\sqrt{x^{4} + x^{2} + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((x**2+1)**3/(x**4+x**2+1)**(3/2),x)

[Out]

-x*(-x**2 + 1)/(3*sqrt(x**4 + x**2 + 1)) + 2*x*sqrt(x**4 + x**2 + 1)/(3*(x**2 +
1)) - 2*sqrt((x**4 + x**2 + 1)/(x**2 + 1)**2)*(x**2 + 1)*elliptic_e(2*atan(x), 1
/4)/(3*sqrt(x**4 + x**2 + 1)) + sqrt((x**4 + x**2 + 1)/(x**2 + 1)**2)*(x**2 + 1)
*elliptic_f(2*atan(x), 1/4)/sqrt(x**4 + x**2 + 1)

_______________________________________________________________________________________

Mathematica [C]  time = 0.272696, size = 136, normalized size = 0.94 \[ \frac{x^3+2 (-1)^{5/6} \sqrt{3 \sqrt [3]{-1} x^2+3} \sqrt{1-(-1)^{2/3} x^2} F\left (i \sinh ^{-1}\left ((-1)^{5/6} x\right )|(-1)^{2/3}\right )+2 \sqrt [3]{-1} \sqrt{\sqrt [3]{-1} x^2+1} \sqrt{1-(-1)^{2/3} x^2} E\left (i \sinh ^{-1}\left ((-1)^{5/6} x\right )|(-1)^{2/3}\right )-x}{3 \sqrt{x^4+x^2+1}} \]

Antiderivative was successfully verified.

[In]  Integrate[(1 + x^2)^3/(1 + x^2 + x^4)^(3/2),x]

[Out]

(-x + x^3 + 2*(-1)^(1/3)*Sqrt[1 + (-1)^(1/3)*x^2]*Sqrt[1 - (-1)^(2/3)*x^2]*Ellip
ticE[I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)] + 2*(-1)^(5/6)*Sqrt[3 + 3*(-1)^(1/3)*x
^2]*Sqrt[1 - (-1)^(2/3)*x^2]*EllipticF[I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)])/(3*
Sqrt[1 + x^2 + x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.044, size = 268, normalized size = 1.9 \[ -4\,{\frac{-x/6+1/6\,{x}^{3}}{\sqrt{{x}^{4}+{x}^{2}+1}}}+{\frac{8}{3\,\sqrt{-2+2\,i\sqrt{3}}}\sqrt{1- \left ( -{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ){x}^{2}}\sqrt{1- \left ( -{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ){x}^{2}}{\it EllipticF} \left ({\frac{x\sqrt{-2+2\,i\sqrt{3}}}{2}},{\frac{\sqrt{-2+2\,i\sqrt{3}}}{2}} \right ){\frac{1}{\sqrt{{x}^{4}+{x}^{2}+1}}}}-{\frac{8}{3\,\sqrt{-2+2\,i\sqrt{3}} \left ( i\sqrt{3}+1 \right ) }\sqrt{1- \left ( -{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ){x}^{2}}\sqrt{1- \left ( -{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ){x}^{2}} \left ({\it EllipticF} \left ({\frac{x\sqrt{-2+2\,i\sqrt{3}}}{2}},{\frac{\sqrt{-2+2\,i\sqrt{3}}}{2}} \right ) -{\it EllipticE} \left ({\frac{x\sqrt{-2+2\,i\sqrt{3}}}{2}},{\frac{\sqrt{-2+2\,i\sqrt{3}}}{2}} \right ) \right ){\frac{1}{\sqrt{{x}^{4}+{x}^{2}+1}}}}-6\,{\frac{-1/3\,{x}^{3}-x/6}{\sqrt{{x}^{4}+{x}^{2}+1}}}-6\,{\frac{1/6\,{x}^{3}+x/3}{\sqrt{{x}^{4}+{x}^{2}+1}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((x^2+1)^3/(x^4+x^2+1)^(3/2),x)

[Out]

-4*(-1/6*x+1/6*x^3)/(x^4+x^2+1)^(1/2)+8/3/(-2+2*I*3^(1/2))^(1/2)*(1-(-1/2+1/2*I*
3^(1/2))*x^2)^(1/2)*(1-(-1/2-1/2*I*3^(1/2))*x^2)^(1/2)/(x^4+x^2+1)^(1/2)*Ellipti
cF(1/2*x*(-2+2*I*3^(1/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2))-8/3/(-2+2*I*3^(1/2))
^(1/2)*(1-(-1/2+1/2*I*3^(1/2))*x^2)^(1/2)*(1-(-1/2-1/2*I*3^(1/2))*x^2)^(1/2)/(x^
4+x^2+1)^(1/2)/(I*3^(1/2)+1)*(EllipticF(1/2*x*(-2+2*I*3^(1/2))^(1/2),1/2*(-2+2*I
*3^(1/2))^(1/2))-EllipticE(1/2*x*(-2+2*I*3^(1/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/
2)))-6*(-1/3*x^3-1/6*x)/(x^4+x^2+1)^(1/2)-6*(1/6*x^3+1/3*x)/(x^4+x^2+1)^(1/2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (x^{2} + 1\right )}^{3}}{{\left (x^{4} + x^{2} + 1\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((x^2 + 1)^3/(x^4 + x^2 + 1)^(3/2),x, algorithm="maxima")

[Out]

integrate((x^2 + 1)^3/(x^4 + x^2 + 1)^(3/2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{x^{6} + 3 \, x^{4} + 3 \, x^{2} + 1}{{\left (x^{4} + x^{2} + 1\right )}^{\frac{3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((x^2 + 1)^3/(x^4 + x^2 + 1)^(3/2),x, algorithm="fricas")

[Out]

integral((x^6 + 3*x^4 + 3*x^2 + 1)/(x^4 + x^2 + 1)^(3/2), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\left (x^{2} + 1\right )^{3}}{\left (\left (x^{2} - x + 1\right ) \left (x^{2} + x + 1\right )\right )^{\frac{3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((x**2+1)**3/(x**4+x**2+1)**(3/2),x)

[Out]

Integral((x**2 + 1)**3/((x**2 - x + 1)*(x**2 + x + 1))**(3/2), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (x^{2} + 1\right )}^{3}}{{\left (x^{4} + x^{2} + 1\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((x^2 + 1)^3/(x^4 + x^2 + 1)^(3/2),x, algorithm="giac")

[Out]

integrate((x^2 + 1)^3/(x^4 + x^2 + 1)^(3/2), x)